

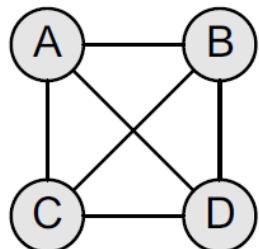
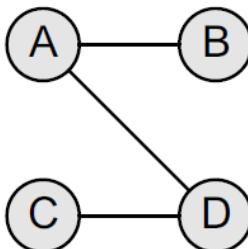
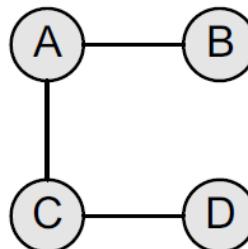
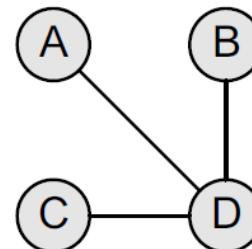
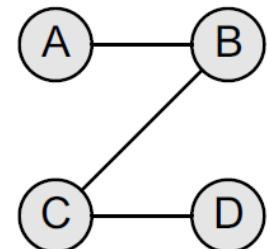
Minimal Spanning Trees

Kuan-Yu Chen (陳冠宇)

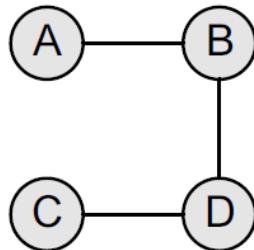
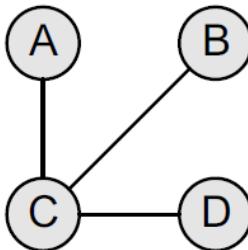
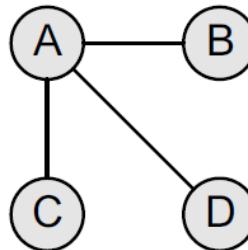
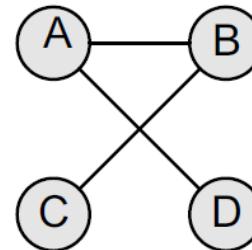
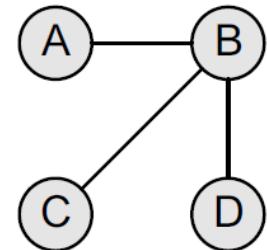
2019/05/27 @ TR-310-1, NTUST

Spanning Tree

- A spanning tree of a connected, undirected graph G is a subgraph of G which is a tree that connects all the vertices together
 - A graph G can have many different spanning trees

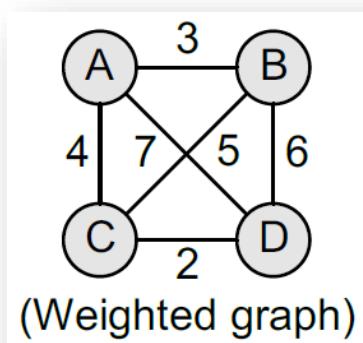
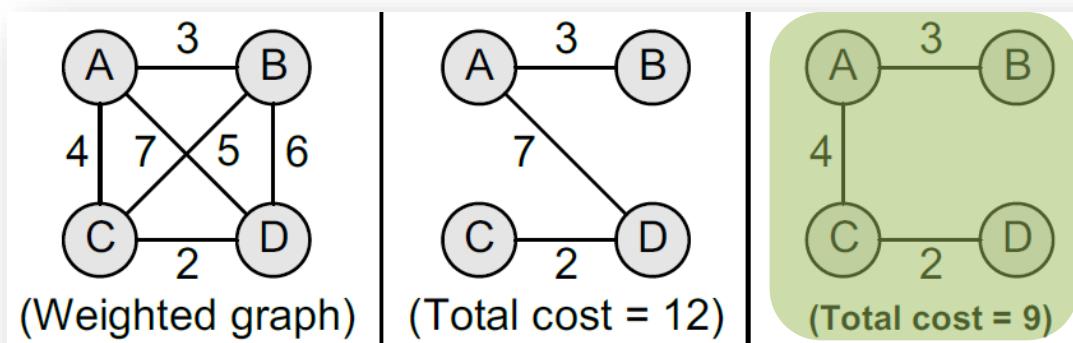
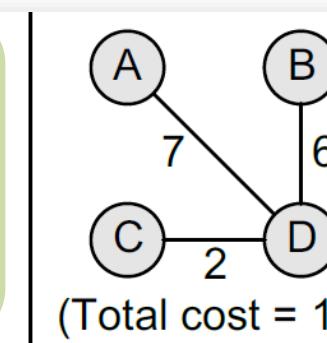
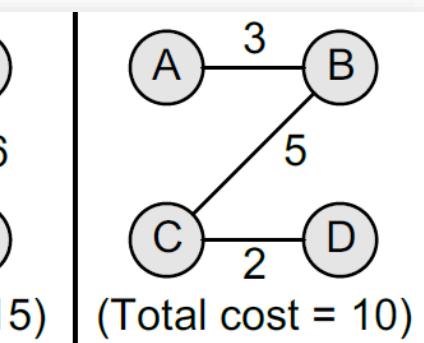
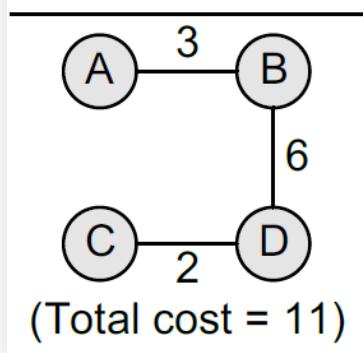
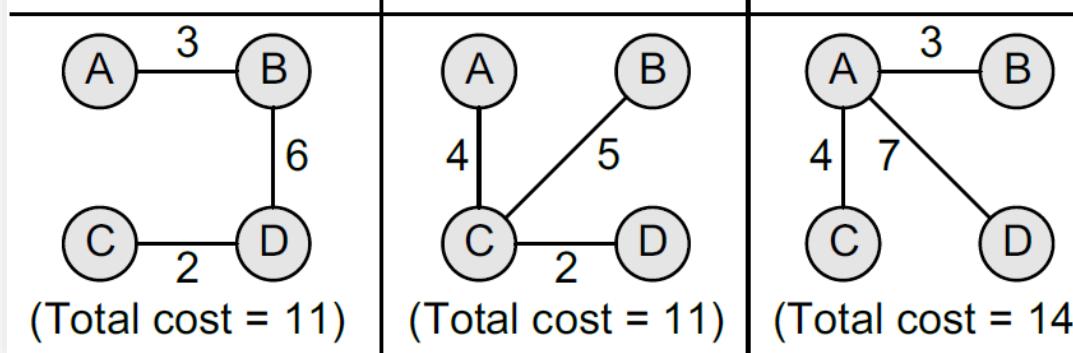
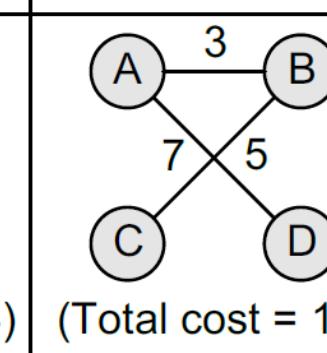
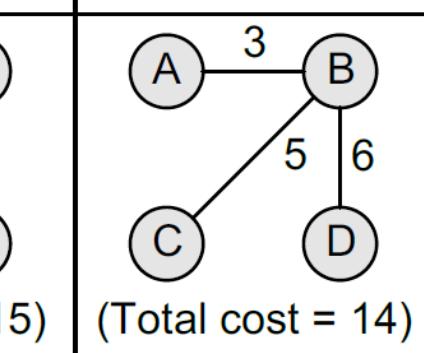


(Unweighted graph)



Minimum Spanning Tree

- A **minimum spanning tree** (MST) is defined as a spanning tree with weight less than or equal to the weight of every other spanning tree
 - We can assign **weights** to each edge, and use it to assign a weight to a spanning tree by calculating the sum of the weights of the edges in that spanning

 <p>(Weighted graph)</p>	 <p>(Total cost = 9)</p>	 <p>(Total cost = 12)</p>	 <p>(Total cost = 15)</p>	<p>(Total cost = 15)</p>
 <p>(Total cost = 11)</p>	 <p>(Total cost = 11)</p>	 <p>(Total cost = 14)</p>	 <p>(Total cost = 15)</p>	<p>(Total cost = 14)</p>

Prim's Algorithm.

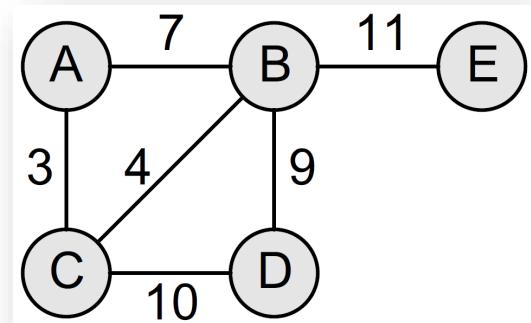
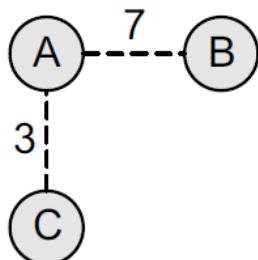
- Prim's algorithm is a greedy algorithm that is used to form a minimum spanning tree for a connected weighted undirected graph
 - **Tree vertices**
 - Vertices that are a part of the minimum spanning tree T
 - **Fringe (Neighboring) vertices**
 - Vertices that are currently not a part of T , but are adjacent to some tree vertex
 - **Unseen vertices**
 - Vertices that are neither tree vertices nor fringe vertices fall under this category

```
Step 1: Select a starting vertex
Step 2: Repeat Steps 3 and 4 until there are fringe vertices
Step 3:     Select an edge e connecting the tree vertex and
            fringe vertex that has minimum weight
Step 4:     Add the selected edge and the vertex to the
            minimum spanning tree T
            [END OF LOOP]
Step 5: EXIT
```

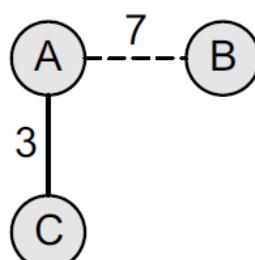
Prim's Algorithm..

- Construct a minimum spanning tree of the graph by using Prim's algorithm

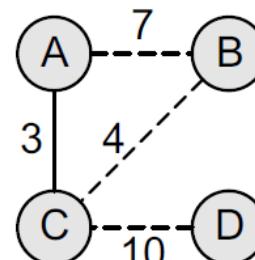
- Step 1: Choose a starting vertex A
- Step 2: Add the fringe vertices (that are adjacent to A)
- Step 3: Since the edge connecting A and C has less weight, add C to the tree
- Step 4: Add the fringe vertices (that are adjacent to C)
- Step 5: Since the edge connecting C and B has less weight, add B to the tree



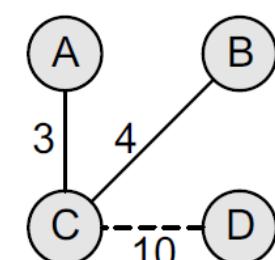
Step 1



Step 2



Step 3

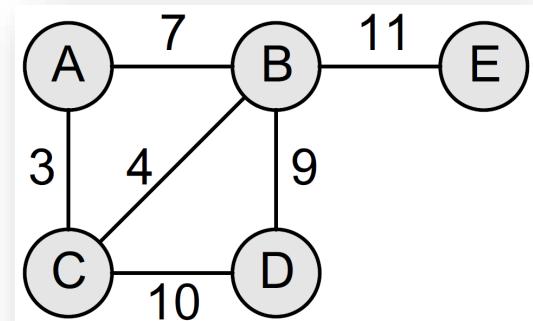
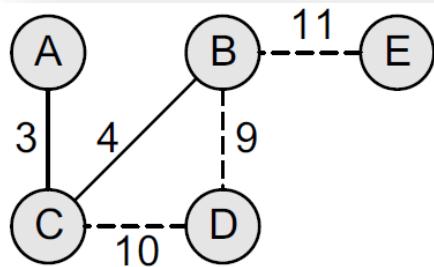


Step 4

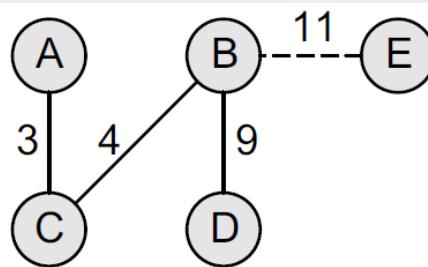
Step 5

Prim's Algorithm...

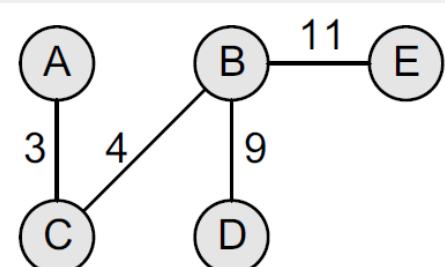
- Step 6: Add the fringe vertices (that are adjacent to B)
- Step 7: Since the edge connecting B and D has less weight, add D to the tree
- Step 8: Add E to the tree



Step 6



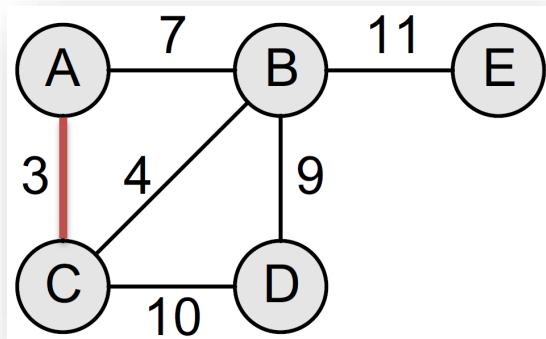
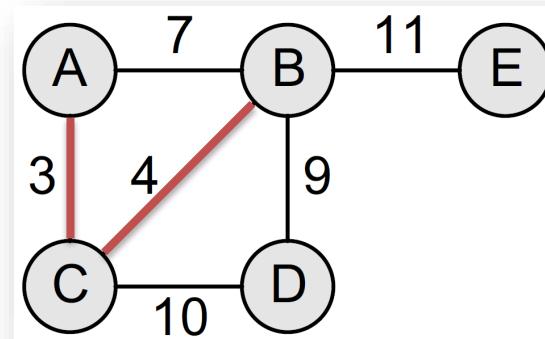
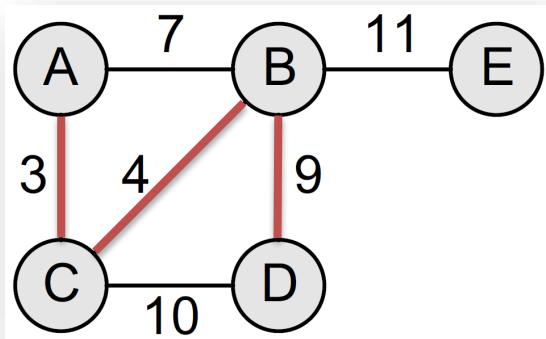
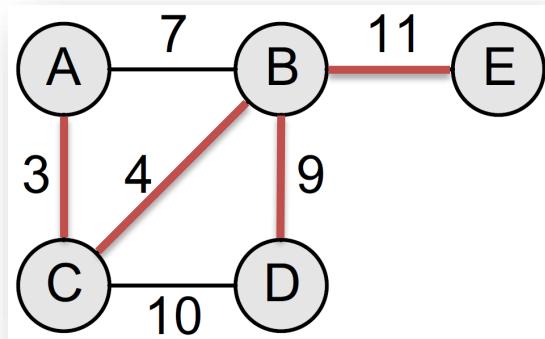
Step 7



Step 8

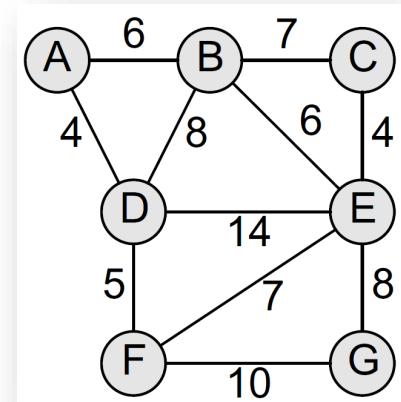
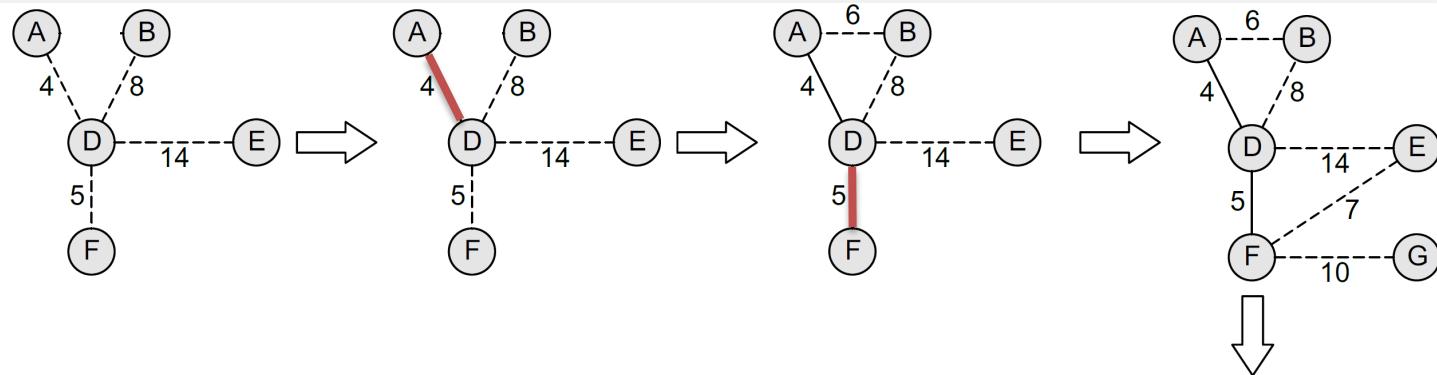
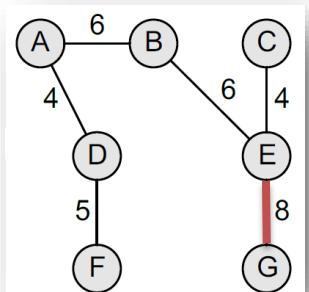
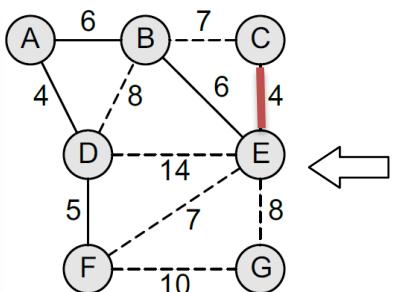
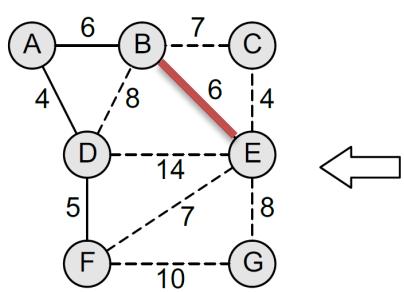
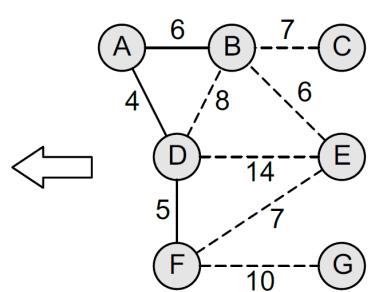
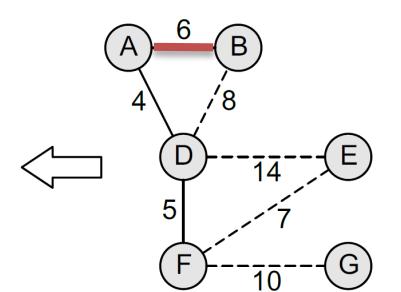
Prim's Algorithm....

- By looking!



Prim's Algorithm....

- Construct a minimum spanning tree of the graph by using Prim's algorithm from vertex D



Kruskal's Algorithm.

- Kruskal's algorithm is used to find the minimum spanning tree for a connected weighted graph
 - If the graph is not connected, then it finds a **minimum spanning forest**

Step 1: Create a forest in such a way that each graph is a separate tree.

Step 2: Create a priority queue Q that contains all the edges of the graph.

Step 3: Repeat Steps 4 and 5 while Q is NOT EMPTY

Step 4: Remove an edge from Q

Step 5: IF the edge obtained in Step 4 connects two different trees, then Add it to the forest (for combining two trees into one tree).

ELSE

 Discard the edge

Step 6: END

Kruskal's Algorithm..

- Apply Kruskal's algorithm on the given graph

– Initial:

- $F = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{F\}\}$
- $MST = \{\}$
- Priority Queue $Q = \{(A, D), (E, F), (C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)\}$

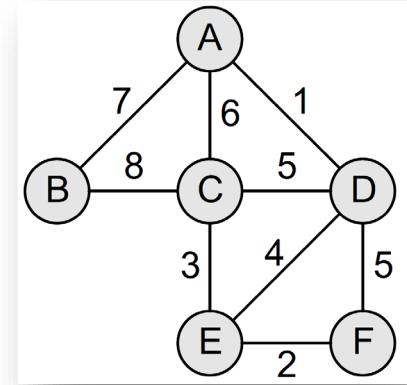
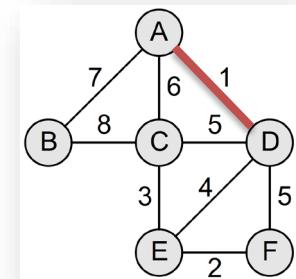
– Step1:

- Remove the edge (A, D) from Q

$$F = \{\{A, D\}, \{B\}, \{C\}, \{E\}, \{F\}\}$$

$$MST = \{A, D\}$$

$$Q = \{(E, F), (C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)\}$$



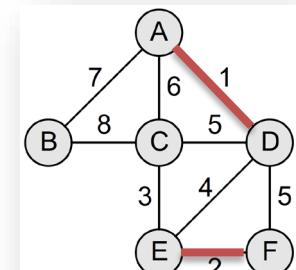
– Step2:

- Remove the edge (E, F) from Q

$$F = \{\{A, D\}, \{B\}, \{C\}, \{E, F\}\}$$

$$MST = \{(A, D), (E, F)\}$$

$$Q = \{(C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)\}$$



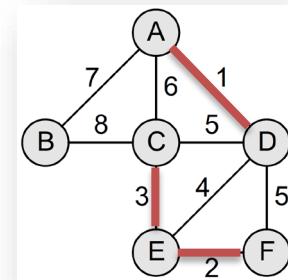
Kruskal's Algorithm...

- Step3:
 - Remove the edge (C, E) from Q

$$F = \{\{A, D\}, \{B\}, \{C, E, F\}\}$$

$$MST = \{(A, D), (C, E), (E, F)\}$$

$$Q = \{(E, D), (C, D), (D, F), (A, C), (A, B), (B, C)\}$$

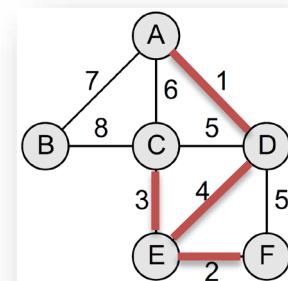


- Step4:
 - Remove the edge (E, D) from Q

$$F = \{\{A, C, D, E, F\}, \{B\}\}$$

$$MST = \{(A, D), (C, E), (E, F), (E, D)\}$$

$$Q = \{(C, D), (D, F), (A, C), (A, B), (B, C)\}$$



- Step5:
 - Remove the edge (C, D) from Q

The edge does not connect different trees, so simply discard this edge

$$F = \{\{A, C, D, E, F\}, \{B\}\}$$

$$MST = \{(A, D), (C, E), (E, F), (E, D)\}$$

$$Q = \{(D, F), (A, C), (A, B), (B, C)\}$$

Kruskal's Algorithm....

- Step6:

- Remove the edge (D, F) from Q

The edge does not connect different trees, so simply discard this edge

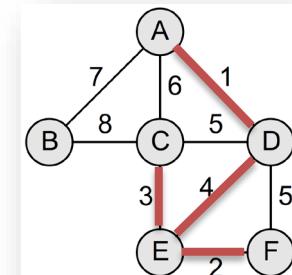
$$\begin{aligned}F &= \{\{A, C, D, E, F\}, \{B\}\} \\ \text{MST} &= \{(A, D), (C, E), (E, F), (E, D)\} \\ Q &= \{(A, C), (A, B), (B, C)\}\end{aligned}$$

- Step7:

- Remove the edge (A, C) from Q

The edge does not connect different trees, so simply discard this edge

$$\begin{aligned}F &= \{\{A, C, D, E, F\}, \{B\}\} \\ \text{MST} &= \{(A, D), (C, E), (E, F), (E, D)\} \\ Q &= \{(A, B), (B, C)\}\end{aligned}$$



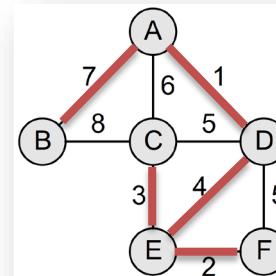
Kruskal's Algorithm.....

- Step8:
 - Remove the edge (A, B) from Q

$$F = \{A, B, C, D, E, F\}$$

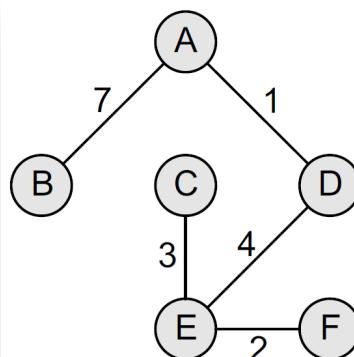
$$MST = \{(A, D), (C, E), (E, F), (E, D), (A, B)\}$$

$$Q = \{(B, C)\}$$



- Step8:
 - Remove the edge (B, C) from Q

The edge does not connect different trees, so simply discard this edge



$$F = \{A, B, C, D, E, F\}$$
$$MST = \{(A, D), (C, E), (E, F), (E, D), (A, B)\}$$
$$Q = \{\}$$

Questions?

kychen@mail.ntust.edu.tw